If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-11k+23=0
a = 1; b = -11; c = +23;
Δ = b2-4ac
Δ = -112-4·1·23
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-\sqrt{29}}{2*1}=\frac{11-\sqrt{29}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+\sqrt{29}}{2*1}=\frac{11+\sqrt{29}}{2} $
| 1x12x3=10 | | (a^2+6)/2=11 | | a2+6/2=11 | | 2×4x-6=10x-22 | | 8z-3;z=13 | | -|x|x=48 | | 8x^2+6=46 | | a/5=0.5 | | (2x-5)/3+3=24 | | -5y+3=2(4y+12) | | 15•6=(x-2)/3 | | f^2=16 | | 3=(7x-5x) | | 1,92x^2-4,17x+1,13=0 | | 5a=a=24 | | e9 | | 5x2+16x=15 | | 6z=5z×z | | c×c+10c=0 | | 7x-12=2x+8x=4 | | 0.268x-x=5000-670 | | y(y+10)=5/12 | | p+4p/4=5 | | x/10+8=12.5 | | Z=3+4i/ | | m²-100=0 | | 28+x/4=34 | | (17x+4°)=(12°+15x) | | (2x²+7x-8)(2x²+7x-3)-6=0 | | xxx-14=50 | | 3x^2+25=133 | | x+26/7=1 |